Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Infektsionnye Bolezni ; 20(4):12-24, 2022.
Article in Russian | EMBASE | ID: covidwho-20240463

ABSTRACT

Neutrophilic granulocytes (NG) are the main drivers of pathological inflammation in COVID-19. Objective. To specify the mechanisms of immunopathogenesis of COVID-19 based on a comparative immunological study of the number and phenotype of CD16+SD62L+CD11b+CD63- and CD16+SD62L+CD11b+CD63+ subsets with an assessment of their effector functions against changing profile of NG-associated cytokines IL-8, IL-18, IL-17A, VEGF-A, IFNalpha, and IFNgamma. Patients and methods. In patients with moderate-to-severe and severe COVID-19, we determined IL-1beta, TNFalpha, IL-6, IL-8, IL-18, IL-17A, VEGF-A, IFNalpha, and IFNgamma (ELISA), the phenotype of CD16+SD62L+CD11b+CD63- and CD16+SD62L+CD11b+CD63+ subsets, NF-kappaB-NG (CYTOMICS FC500), phagocytically active NG (%), neutrophil extracellular traps (NETs), NG in apoptosis, and the activity of NADPH oxidase. Results. In COVID-19 against the background of IFNalpha and IFNgamma production blockade and high levels of NG-associated IL-8, IL-18, IL-17A, VEGF-A, a reduction in the number of mature and functionally active CD16brightSD62LbrightCD11bbrightCD63-NG subsets was revealed, as well as an increase in the number of CD16dimSD62LdimSD11bbrightCD63-NG subsets with an immunosuppressive phenotype and CD16brightSD62LbrightSD11bbrightCD63bright-NG subsets with high cytotoxic activity and ability to form NETs, a decrease in the percentage of phagocytically active NG and an increase in the activity of NADPH oxidase, NETs, and NG in apoptosis. Conclusion. IFNalpha deficiency provokes a hyperergic response of NG-associated cytokines, which leads to the formation of uncontrolled immune inflammation involving NG subsets with an immunosuppressive and cytotoxic phenotype, exacerbating the course of COVID-19. The use of recombinant IFNalpha-2b with antioxidants (Viferon) in the early stages of the disease can help to restore immune homeostasis, normalize the level of NG-associated cytokines, reduce NERTs, and achieve good clinical efficacy.Copyright © 2022, Dynasty Publishing House. All rights reserved.

2.
Advances in Traditional Medicine ; 23(2):321-345, 2023.
Article in English | EMBASE | ID: covidwho-20236383

ABSTRACT

The current outbreak of COVID-19 is caused by the SARS-CoV-2 virus that has affected > 210 countries. Various steps are taken by different countries to tackle the current war-like health situation. In India, the Ministry of AYUSH released a self-care advisory for immunomodulation measures during the COVID-19 and this review article discusses the detailed scientific rationale associated with this advisory. Authors have spotted and presented in-depth insight of advisory in terms of immunomodulatory, antiviral, antibacterial, co-morbidity associated actions, and their probable mechanism of action. Immunomodulatory actions of advised herbs with no significant adverse drug reaction/toxicity strongly support the extension of advisory for COVID-19 prevention, prophylaxis, mitigations, and rehabilitation capacities. This advisory also emphasized Dhyana (meditation) and Yogasanas as a holistic approach in enhancing immunity, mental health, and quality of life. The present review may open-up new meadows for research and can provide better conceptual leads for future researches in immunomodulation, antiviral-development, psychoneuroimmunology, especially for COVID-19.Copyright © 2021, Institute of Korean Medicine, Kyung Hee University.

3.
Maternal-Fetal Medicine ; 5(2):88-96, 2023.
Article in English | EMBASE | ID: covidwho-20235041

ABSTRACT

Objective This study aimed to investigate the immune response of a pregnant woman who recovered from the coronavirus disease 2019 (COVID_RS) by using single-cell transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) and to analyze the properties of different immune cell subsets. Methods PBMCs were collected from the COVID_RS patient at 28 weeks of gestation, before a cesarean section. The PBMCs were then analyzed using single-cell RNA sequencing. The transcriptional profiles of myeloid, T, and natural killer (NK) cell subsets were systematically analyzed and compared with those of healthy pregnant controls from a published single-cell RNA sequencing data set. Results We identified major cell types such as T cells, B cells, NK cells, and myeloid cells in the PBMCs of our COVID_RS patient. The increase of myeloid and B cells and decrease of T cells and NK cells in the PBMCs in this patient were quite distinct compared with that in the control subjects. After reclustering and Augur analysis, we found that CD16 monocytes and mucosal-Associated invariant T (MAIT) cells were mostly affected within different myeloid, T, and NK cell subtypes in our COVID_RS patient. The proportion of CD16 monocytes in the total myeloid population was increased, and the frequency of MAIT cells in the total T and NK cells was significantly decreased in the COVID-RS patient. We also observed significant enrichment of gene sets related to antigen processing and presentation, T-cell activation, T-cell differentiation, and tumor necrosis factor superfamily cytokine production in CD16 monocytes, and enrichment of gene sets related to antigen processing and presentation, response to type II interferon, and response to virus in MAIT cells. Conclusion Our study provides a single-cell resolution atlas of the immune gene expression patterns in PBMCs from a COVID_RS patient. Our findings suggest that CD16-positive monocytes and MAIT cells likely play crucial roles in the maternal immune response against severe acute respiratory syndrome coronavirus 2 infection. These results contribute to a better understanding of the maternal immune response to severe acute respiratory syndrome coronavirus 2 infection and may have implications for the development of effective treatments and preventive strategies for the coronavirus disease 2019 in pregnant women.Copyright © Wolters Kluwer Health, Inc. All rights reserved.

4.
Jundishapur Journal of Microbiology ; 16(1) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2303450

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has prompted researchers to look for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenicity in depth. Immune system dysregulation was one of the major mechanisms in its pathogenesis. The evidence regarding the levels of interferons (IFNs) and pro-and anti-inflammatory cytokines in COVID-19 patients is not well-established. Objective(s): Therefore, this study evaluated the expression level of type-I, II, III IFNs, along with interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), and FOXP3 genes in patients with severe COVID-19 to provide additional insights regarding the regulation of these cytokines during COVID-19 infection. Method(s): Peripheral blood mononuclear cells were isolated from two groups, including severe COVID-19 patients and healthy con-trols. Ribonucleic acid was extracted to evaluate the expression level of IFN-a, IFN-b, IFN-g, IFN-la, IL-1, IL-6, IL-10, and FOXP3 genes using real-time polymerase chain reaction. The correlations between the expression levels of these genes were also assessed. Result(s): A total of 40 samples were divided into two groups, with each group consisting of 20 samples. When comparing the severe COVID-19 group to the controls, the expression levels of IFN-g, tumor necrosis factor-alpha (TNF-alpha), IL-6, and IL-10 genes were sig-nificantly higher in the severe COVID-19 group. The two groups had no significant differences in IFN-a, IFN-b, IFN-la, IL-1, and FOXP3 expression. The correlation analysis revealed a negative correlation between type I and type III IFNs (i.e., IFN-a and IFN-la) and pro-inflammatory cytokines (i.e., IL-1 and IL-10). Conclusion(s): This study suggests the possible upregulation of IFN-g, IL-6, IL-10, and TNF-alpha during SARS-CoV-2 pathogenicity. The pre-liminary findings of this study and those reported previously show that the levels of IFNs and pro-and anti-inflammatory cytokines are not uniformly expressed among all COVID-19 patients and might differ as the disease progresses to the severe stage.Copyright © 2023, Author(s).

5.
Clinical Immunology Communications ; 2:154-158, 2022.
Article in English | EMBASE | ID: covidwho-2296042

ABSTRACT

Generating memory T cell responses besides humoral immune responses is essential when it comes to the efficacy of a vaccine. In this study, the presence of memory T cell responses after aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac) in seronegative and seropositive elderly individuals were examined. CD4+ and CD8+ memory T cell proliferation and IFN-gamma production capacities were evaluated. Additionally, clinical frailty scale (CFS) and FRAIL scales of the individuals were scored. CD4+ memory T cell responses more prominent than CD8+ memory T cells. In seronegative individuals, 80% of them had memory CD4+ and IFN-gamma, whereas 50% of them had memory CD4+ and all of them had IFN-gamma responses. Additionally, 40% of seronegative patients and 50% of seropositive patients had memory CD8+ responses. To sum up, humoral immune responses are not associated with memory T cell responses, and in seronegative individuals, memory T cell responses can be detected.Copyright © 2022

6.
Infektsionnye Bolezni ; 20(3):26-34, 2022.
Article in Russian | EMBASE | ID: covidwho-2271129

ABSTRACT

The clinical efficacy of recombinant IFN-alpha2b in therapy for COVID-19 in children is the basis for studying the parameters of the cytokine production activity of immune system cells and will allow to optimize antiviral therapy regimens. Objective. To study the effect of recombinant IFN-alpha2b on serum IFN-alpha and IFN-gamma concentrations and their synthesis by immune system cells in children with COVID-19. Materials and methods. Peripheral blood samples from 100 patients aged 1 to 17 years (1-7 years - 50 people, 8-17 years - 50 people) with a moderate course of COVID-19 were examined. Patients in the study group received recombinant IFN-alpha2b as part of complex therapy. Patients in the comparison group received antiviral therapy with Arbidol. Multiplex analysis was used to determine serum IFN-alpha and IFN-gamma concentrations and the level of their synthesis by immune system cells. The enzyme-linked immunosorbent assay (ELISA) was used to determine serum concentrations of antibodies to IFN-alpha. Results. Combination therapy with recombinant IFN-alpha2b in children of both age groups led to an increase in serum IFN-alpha concentrations compared to baseline values prior to treatment, in children in the control group and patients with COVID-19 after treatment with Arbidol. There were no significant changes in serum IFN-alpha and IFN-gamma concentrations and their synthesis in intact and PHA-stimulated cells in children of both age groups during treatment with Arbidol. Serum concentrations of antibodies to IFN-alpha during treatment with recombinant IFN-alpha2b did not depend on the age of children and remained within the reference range. Conclusion. A significant increase in serum IFN-alpha concentrations and restoration of its synthesis level induced by PHA to reference values indicate that the use of recombinant interferon medications with their antiviral and immunomodulatory effects should become an integral part of COVID-19 therapy.Copyright © 2022, Dynasty Publishing House. All rights reserved.

7.
Minerva Biotechnology and Biomolecular Research ; 34(4):196-203, 2022.
Article in English | EMBASE | ID: covidwho-2267230

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) infection induces a pro-inflammatory state of an organism with long-term systemic consequences as a result. Systemic inflammation, characterized by a high circulating level of inflammatory cytokines, is a significant factor influencing articular cartilage metabolism in osteoarthritis (OA). This study aimed to determine the levels of pro-inflammatory and anti-inflammatory cytokines in plasma of patients with OA following SARS-CoV-2 infection and to compare them with those of healthy controls. METHOD(S): The experiment involved patients of the Orthopedic Specialty Clinic aged 46 to 69 diagnosed with knee OA. Among persons with joint pathology a group of convalescent patients from 6-9 months after COVID-19 was identified. The control group involved relatively healthy donors. The plasma levels of pro-inflammatory (IL-1beta, IL-6, IL-8, IL-12beta, tumor necrosis factor alpha [TNF-alpha], interferon-gamma [IFN-gamma]) and anti-inflammatory (IL-4 and IL-10) cytokines were determined by enzyme-linked immunosorbent assay. RESULT(S): It was established that in patients with OA, as well as after suffering from SARS-CoV-2 infection, an increase in the plasma levels of IL-1beta was observed against the background of a decrease in the levels of IL-4, IL-8, IL-10, IL- 12beta, TNF-alpha and IFN-gamma, compared to the healthy controls. COVID-19 more significantly influenced the plasma levels of pro-inflammatory cytokines IL-1beta and IL-12beta. CONCLUSION(S): The results indicate the imbalance of pro- and anti-inflammatory cytokines in the plasma in patients with OA for a long post-COVID. Shanges in the levels of inflammatory mediators suggest distinct immunoregulatory mechanisms involved in the pathogenesis of both joint pathology and systemic disorders caused by SARS-COV-2.Copyright © 2022 EDIZIONI MINERVA MEDICA.

8.
Genetics and Molecular Biology ; 46(4 Supplement 2) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2252644

ABSTRACT

The role of steroid hormones against infectious diseases has been extensively studied. From immunomodulatory action to direct inhibition of microorganism growth, hormones D3 (VD3) and 17beta-estradiol (E2), and the genetic pathways modulated by them, are key targets for a better understanding pathogenesis of infectious respiratory diseases (IRD) such as tuberculosis (TB) and the coronavirus disease-19 (COVID-19). Currently, the world faces two major public health problems, the outbreak of COVID-19, accounting for more than 6 million so far, and TB, more than 1 million deaths per year. Both, although resulting from different pathogens, the Mtb and the SARS-CoV-2, respectively, are considered serious and epidemic. TB and COVID-19 present similar infection rates between men and women, however the number of complications and deaths resulting from the two infections is higher in men when compared to women in childbearing age, which may indicate a role of the sex hormone E2 in the context of these diseases. E2 and VD3 act upon key gene pathways as important immunomodulatory players and supporting molecules in IRDs. This review summarizes the main roles of these hormones (VD3 and E2) in modulating immune and inflammatory responses and their relationship with TB and COVID-19.Copyright © Sociedade Brasileira de Genetica.

9.
Clinical Immunology Communications ; 2:172-176, 2022.
Article in English | EMBASE | ID: covidwho-2252308

ABSTRACT

The decline in vaccine efficacy and the risk of reinfection by SARS-CoV-2 make new studies important to better characterize the immune response against the virus and its components. Here, we investigated the pattern of activation of T-cells and the expression of inflammatory factors by PBMCs obtained from naive and previously infected subjects following COVID-19 vaccination, after PBMCs stimulation with S1, RBD, and N-RBD SARS-CoV-2 proteins. PBMCs showed low levels of ACE2 and TMPRSS2 transcripts, which were not modulated by the exposure of these cells to SARS-CoV-2 proteins. Compared to S1 and RBD, N-RBD stimulation showed a greater ability to stimulate T-cell reactivity, according to CD25 and CD69 markers. Interestingly, T-cell reactivity was more pronounced in vaccinated subjects with prior SARS-CoV-2 infection than in vaccinated donors who never had been diagnosed with COVID-19. Finally, N-RBD stimulation promoted greater expression of IL-6 and IFN-gamma in PBMCs, which reinforces the greater immunogenic potential of this protein in the vaccinated subjects. These data suggest that PBMCs from previously infected and vaccinated subjects are more reactive than those derived from just vaccinated donors. Moreover, the N-RBD together viral proteins showed a greater stimulatory capacity than S1 and RBD viral proteins.Copyright © 2022

10.
Chinese Traditional and Herbal Drugs ; 54(2):579-585, 2023.
Article in Chinese | EMBASE | ID: covidwho-2288773

ABSTRACT

Objective To study the anti-coronavirus effect of Qingre Xiaoyanning Tablet (), and provide experimental basis for evaluating its prevention and treatment of coronavirus infection. Methods A total of 96 BALB/c mice with half male and half female were randomly divided into control group, model group, Lianhua Qingwen Capsules (, 0.546 g/kg) group and Qingre Xiaoyanning Tablet (8.72, 17.44, 34.89 g/kg) groups with 16 mice in each group. BALB/c mice were infected with ip cyclophosphamide combined with HCoV-229E coronavirus to establish a model of coronavirus infection. The therapeutic effect of Qingre Xiaoyanning Tablet was evaluated by body weight, lung index, viral load, hemagglutination titer and pathological changes in lung tissue of mice;Levels of interleukin-1beta (IL-1beta), IL-4, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and vascular cell adhesion molecule-1 (VCAM-1) in alveolar lavage fluid were detected by ELISA;The proportion of macrophages, lymphocytes (CD3+, CD4+) and NK cells in lung tissue was detected by flow cytometry;Western blotting was used to detect Toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88), inhibitor kappa B kinase-beta (IKK-beta), inhibitor kappa B (IkappaB) and p-IkappaB protein expressions in lung tissue. Results Compared with model group, Qingre Xiaoyanning Tablet significantly increased the body weight of virus infected mice (P < 0.05, 0.01), decreased lung index and hemagglutination titer (P < 0.01), improved lung disease (P < 0.05), and significantly inhibited viral mRNA expression (P < 0.01);TNF-alpha, IL-1 beta and VCAM-1 levels in alveolar lavage fluid were decreased (P < 0.05, 0.01), IFN-gamma level was increased (P < 0.05);The percentage of macrophages was significantly decreased (P < 0.05, 0.01), percentage of CD3+, CD4+ lymphocytes and NK cells was increased (P < 0.01);MYD88, TLR4, IkappaB and IKK-beta protein expressions in lung tissue were significantly down regulated (P < 0.05, 0.01). Conclusion Qingre Xiaoyanning Tablet can inhibit the replication of coronavirus in vivo, reduce inflammatory reaction, protect lung tissue, and has obvious anti-coronavirus effect in vivo. Its mechanism may be related to the regulation of TLR4/MyD88/IKK/IkappaB signal pathway and improving immunity.Copyright © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

11.
Coronaviruses ; 3(2):3-5, 2022.
Article in English | EMBASE | ID: covidwho-2277921
12.
Medical Immunology (Russia) ; 24(5):903-910, 2022.
Article in Russian | EMBASE | ID: covidwho-2227677

ABSTRACT

To date, there is no consensus explaining the relationship between varying concentrations of IFNgamma and the severity of infection caused by SARS-CoV-2. The aim of this article was to analyze and formulate conclusions from the selected studies and publications, which, in sum, provide a potentially reasonable view on the role of IFNgamma in COVID-19 pathogenesis. This article highlights current data on the immunological role of IFNgamma which affects differentiation of naive T helper cells, acting as a polarizing factor. It activates the major histocompatibility complex (MHC) class I and II, by increasing the expression of MHC I/II subunits, inhibiting replication of the viral particles by initiating activation of interferon-stimulated genes followed by subsequent synthesis of antiviral proteins. Moreover, IFNgamma activates the production of cytokines by T cells, enhancing cytotoxic activity of the T killers. IFNgamma exerts immunostimulatory and immunomodulatory effects via STAT1, SOCS1 and PIAS genes, thus regulating activation of the JAK-STAT signaling pathway. A number of studies were considered where the patterns of changes in serum IFNgamma concentration were examined in viral infections and SARS-CoV-2. We performed a systemic analysis of the results of studies that showed a relationship between high concentrations of IFNgamma and COVID-19 severity. In a number of studies, the significantly high levels of IFNgamma in COVID-19 patients were often associated with a poor outcome of the disease. The median values of the IFNgamma concentration in severe COVID-19 were found to be significantly higher compared to the results obtained in the cases of moderate severity. It shows an increase, in parallel with viral load in the nasopharyngeal samples upon worsening of the clinical condition. Based on the data on the decreased IFNgamma concentrations in convalescent patients, the mechanism of antagonism between IFNgamma and IL-4 is considered, where the decreases serum concentrations of IFNgamma along with increasing level of IL-4 may be an indirect proof of normal adaptive immune response with subsequent development of antibodies to SARS-CoV-2 and gradual elimination of the virus from the body. Moreover, the evidence is discussed that the patients harboring some parasitic infections (Toxoplasma gondii, Cryptosporidium, Blastocystis hominis, Giardia duodenalis, Entamoeba histolytica) with persistently elevated level of IFNgamma are at reduced risk for severe course of COVID-19. Copyright © 2022, SPb RAACI.

SELECTION OF CITATIONS
SEARCH DETAIL